
Calorimetria

Como já vimos, sendo o calor uma modalidade de energia, o calor poderia ser medido em Joule (J). Porém, é comum a utilização da caloria (cal).

1cal = 4,186J e 1Kcal = 1000 cal.

dez 1-17:06

- Capacidade térmica de um corpo: (C)

É o quociente entre a quantidade de calor Q recebido ou cedido por um corpo e a correspondente variação de temperatura Δt .

$$C = \frac{Q}{\Delta t}$$

A unidade de capacidade térmica é cal/°C

A capacidade térmica de um corpo representa a quantidade de calor necessária para que a temperatura do corpo varie de 1°C.

Exemplo: Um bloco de zinco de capacidade térmica igual a 20 cal/°C recebe 100cal. Calcule a variação de temperatura do bloco.

- Capacidade térmica de um corpo: (C)

É o quociente entre a quantidade de calor Q recebido ou cedido por um corpo e a correspondente variação de temperatura Δt .

$$C = \frac{Q}{\Delta t}$$

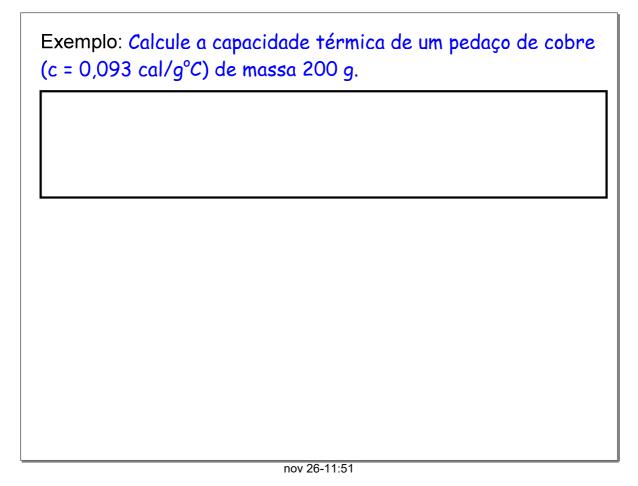
A unidade de capacidade térmica é cal/°C

A capacidade térmica de um corpo representa a quantidade de calor necessária para que a temperatura do corpo varie de 1°C.

Exemplo: Um bloco de zinco de capacidade térmica igual a 20 cal/°C recebe 100cal. Calcule a variação de temperatura do bloco.

Solução:

$$C = 20 \text{ cal/}^{\circ}C$$
 $C = \frac{Q}{\Delta t}$ $\Delta t = \frac{Q}{C}$ $\Delta t = \frac{100}{20}$ $\Delta t = 5^{\circ}C$
 $\Delta t = ?$


dez 1-17:06

- Calor específico de uma substância (c)

A capacidade térmica de um corpo, vai depender da massa do corpo e de uma constante "c", denominada de calor específico.

Substância	Calor específico (cal/gºC)
Mercúrio	0,033
Alumínio	0,217
cobre	0,092
Chumbo	0,030
Prata	0,056
Ferro	0,114
Latão	0,094
Gelo	0,550
Água	1,000
Ār	0,240

dez 1-17:06

Exemplo: Calcule a capacidade térmica de um pedaço de cobre $(c = 0.093 \text{ cal/g}^{\circ}C)$ de massa 200 g.

```
Solução:

C = ? C = m \cdot c

c = 0,093 \text{ cal/g}^{\circ}C C = 200g \cdot 0,093 \text{ cal/g}^{\circ}C

m = 200 \text{ g} C = 18,6 \text{ cal/}^{\circ}C
```

Aula 05 - Calorimetria www.fisicafacil.net

Exemplo: Calcule a capacidade térmica de um pedaço de cobre $(c = 0.093 \text{ cal/g}^{\circ}C)$ de massa 200 g.

```
Solução:

C = ? C = m \cdot c

c = 0,093 \text{ cal/g}^{\circ}C C = 200g \cdot 0,093 \text{ cal/g}^{\circ}C

C = 18,6 \text{ cal/}^{\circ}C
```

No exemplo acima eu falo que o calor específico do cobre vale $c = 0.093 \text{ cal/g}^{\circ}\text{C}$. Qual é o significado físico desse valor?

nov 26-11:51

Exemplo: Calcule a capacidade térmica de um pedaço de cobre $(c = 0.093 \text{ cal/g}^{\circ}C)$ de massa 200 g.

```
Solução:

C = ? C = m \cdot c

c = 0,093 \text{ cal/}g^{\circ}C C = 200g \cdot 0,093 \text{ cal/}g^{\circ}C

C = 18,6 \text{ cal/}^{\circ}C
```

No exemplo acima eu falo que o calor específico do cobre vale c = 0.093 cal/g $^{\circ}$ C. Qual é o significado físico desse valor?

Significa que se você doar 0,093 cal para $1\,\mathrm{g}$ de cobre, a temperatura do mesmo irá subir $1\,\mathrm{^o}C$.

- Equação Fundamental da Calorimetria:

Acabamos de ver duas equações para capacidade térmica:

$$C = \frac{Q}{\Delta t} \qquad e \qquad C = m \cdot c$$
(1) (2)

Como (1) = (2)
$$\longrightarrow \frac{Q}{\Delta t}$$
 = m . c

Q = m . c . Δt ⇒ Equação Fundamental da Calorimetria

Obs. 1^a .) Se $t_f > t_i$ o corpo recebe calor, isto é, Q > 0. Se $t_f < t_i$ o corpo cede calor, isto é, Q < 0.

2^a.) O produto m.c é a capacidade térmica do corpo; logo: C = m.c

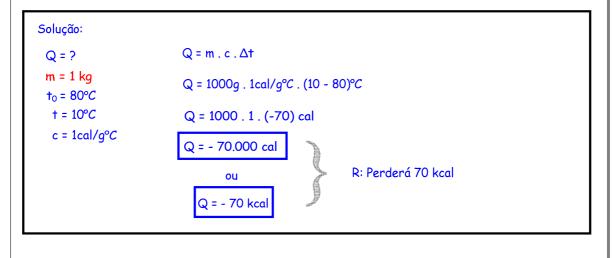
dez 1-17:06

Exercícios de aprendizagem:

- 1) Uma barra de ferro com 500 g de massa deve ser aquecida de 20°C até 220°C. Sendo 0,11 cal/g°C o calor específico do ferro, calcule:
- a) a quantidade de calor que a barra deve receber;
- b) a sua capacidade térmica.

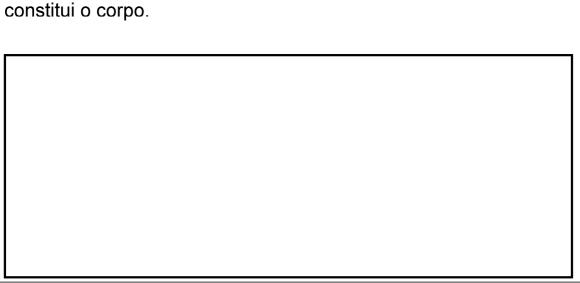
Aula 05 - Calorimetria www.fisicafacil.net

Exercícios de aprendizagem:

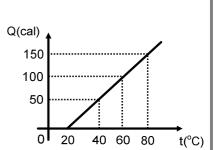

- 1) Uma barra de ferro com 500 g de massa deve ser aquecida de 20°C até 220°C. Sendo 0,11 cal/g°C o calor específico do ferro, calcule:
- a) a quantidade de calor que a barra deve receber;
- b) a sua capacidade térmica.

```
Solução:
                                                              b) C = m \cdot c
                         a) Q=m.c.Δt
 m = 500 g
t_0 = 20^{\circ}C
                                                                      C = 500.0,11
                               Q = 500 . 0,11 . 200
 t = 220°C
                                                                      C = 55 \text{ cal/}^{\circ}C
                               Q = 11.000 cal
 c = 0,11 \text{ cal/g}^{\circ}C
                                                                            ou
 a) Q = ?
 b) C = ?
                                                                       C = 11.0
                                                                       C = 55 \text{ cal/}^{\circ}C
```

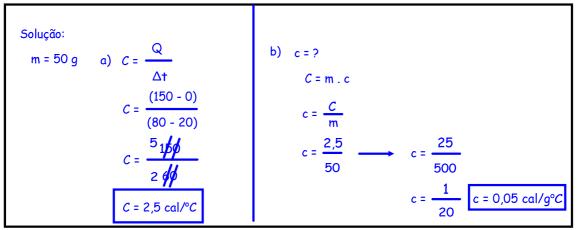
dez 1-23:02


2) Quantas calorias perderá um quilograma de água, quando sua temperatura variar de 80°C para 10°C?
d 4.00.00

2) Quantas calorias perderá um quilograma de água, quando sua temperatura variar de 80°C para 10°C?


dez 1-23:02

- 3) O diagrama ao lado fornece a quantidade de calor absorvido por um corpo em função quantidade da temperatura. Sabendo-se que a massa do corpo vale 50 g, determine:
 - Q(cal) 150 100 50 20 40 60 80 t(°C)
- a) a capacidade térmica do corpo;b) o calor específico da substância que



dez 1-23:02

3) O diagrama ao lado fornece a quantidade de calor absorvido por um corpo em função Q(cal) da temperatura. Sabendo-se que a massa do corpo vale 50 g, determine:

- a) a capacidade térmica do corpo;
- b) o calor específico da substância que constitui o corpo.

dez 1-23:02